Baxter operator and Archimedean Hecke algebra

نویسندگان

  • A. Gerasimov
  • D. Lebedev
چکیده

In this paper we introduce Baxter integral Q-operators for finite-dimensional Lie algebras gll+1 and so2l+1. Whittaker functions corresponding to these algebras are eigenfunctions of the Q-operators with the eigenvalues expressed in terms of Gammafunctions. The appearance of the Gamma-functions is one of the manifestations of an interesting connection between Mellin-Barnes and Givental integral representations of Whittaker functions, which are in a sense dual to each other. We define a dual Baxter operator and derive a family of mixed Mellin-Barnes-Givental integral representations. Givental and Mellin-Barnes integral representations are used to provide a short proof of the Friedberg-Bump and Bump conjectures for G = GL(l+1) proved earlier by Stade. We also identify eigenvalues of the Baxter Q-operator acting on Whittaker functions with local Archimedean L-factors. The Baxter Q-operator introduced in this paper is then described as a particular realization of the explicitly defined universal Baxter operator in the spherical Hecke algebra H(G(R),K), K being a maximal compact subgroup of G. Finally we stress an analogy between Q-operators and certain elements of the non-Archimedean Hecke algebra H(G(Qp), G(Zp)). E-mail: [email protected] E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Baxter operator to Archimedean Hecke algebra

In this note we introduce Baxter integral Q-operators for finite-dimensional Lie algebras gll+1 and so2l+1. Corresponding Whittaker functions are eigenfunctions of the Q-operators with the eigenvalues expressed in terms of Gamma-functions. This property is one of the manifestations of an interesting connection between MellinBarnes and Givental integral representations of Whittaker functions. Th...

متن کامل

Hecke Algebra Solutions to the Reflection Equation

We construct solutions to Sklyanin's reeection equation in the case in which the bulk Yang-Baxter solution is of Hecke algebra type. Each solution constitutes an extension of the Hecke algebra together with a spectral parameter dependent boundary operator, K(). We solve for the deening relations of the extension, and for the spectral parameter dependence of the boundary operator. Finding concre...

متن کامل

Flag Varieties and the Yang-baxter Equation

We investigate certain bases of Hecke algebras deened by means of the Yang-Baxter equation, which we call Yang-Baxter bases. These bases are essentially self-adjoint with respect to a canonical bilinear form. In the case of the degenerate Hecke algebra, we identify the coeecients in the expansion of the Yang-Baxter basis on the usual basis of the algebra with specializations of double Schubert ...

متن کامل

ar X iv : q - a lg / 9 60 70 15 v 1 1 4 Ju l 1 99 6 Flag Varieties and the Yang - Baxter Equation

We investigate certain bases of Hecke algebras defined by means of the YangBaxter equation, which we call Yang-Baxter bases. These bases are essentially selfadjoint with respect to a canonical bilinear form. In the case of the degenerate Hecke algebra, we identify the coefficients in the expansion of the Yang-Baxter basis on the usual basis of the algebra with specializations of double Schubert...

متن کامل

On Bernstein’s Presentation of Iwahori-hecke Algebras and Representations of Split Reductive Groups over Non-archimedean Local Fields

This article gives conceptual statements and proofs relating parabolic induction and Jacquet functors on split reductive groups over a nonArchimedean local field to the associated Iwahori-Hecke algebra as tensoring from and restricting to parabolic subalgebras. The main tool is Bernstein’s presentation of the Iwahori-Hecke algebra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008